
From Perception Logs to Failure Modes: Language-Driven Semantic
Clustering of Failures for Robot Safety

Fig. 1: A closed-loop, language-driven framework for interpretable failure mode discovery in autonomous systems. It extracts
semantically meaningful failure patterns from deployment-time perceptual data without supervision and organizes them into
human-understandable clusters. These clusters support downstream applications such as targeted data collection, policy
refinement, and runtime failure monitoring, enabling scalable and continuous safety improvement.

Abstract— As robotic systems become increasingly integrated
into real-world environments—ranging from autonomous vehi-
cles to household assistants—they inevitably encounter diverse
and unstructured scenarios that lead to failures. While such fail-
ures pose safety and reliability challenges, they also provide rich
perceptual data for improving future performance. However,
manually analyzing large-scale failure datasets is impractical.
In this work, we present a method for automatically organizing
large-scale robotic failure data into semantically meaningful
failure clusters, enabling scalable learning from failure without
human supervision. Our approach leverages the reasoning
capabilities of Multimodal Large Language Models (MLLMs),
trained on internet-scale data, to infer high-level failure causes
from raw perceptual trajectories and discover interpretable
structure within uncurated failure logs. These semantic clusters
reveal patterns and hypothesized causes of failure, enabling
scalable learning from experience. We demonstrate that the
discovered failure modes can guide targeted data collection
for policy refinement, accelerating iterative improvement in
agent policies and overall safety. Additionally, we show that
these semantic clusters can benefit online failure monitoring
systems, offering a lightweight yet powerful safeguard for real-
time operation. We demonstrate that this framework enhances
robot learning and robustness by transforming real-world
failures into actionable and interpretable signals for adaptation.
Wesbite: https://mllm-failure-clustering.github.io/

I. INTRODUCTION

Autonomous systems—ranging from self-driving vehicles
to household robots—are increasingly deployed in open,
dynamic environments. In such unstructured settings, even
state-of-the-art robotic systems are prone to failures due to
unexpected interactions, unmodeled dynamics, and long-tail

edge cases that deviate from training distributions. Tradi-
tional validation pipelines, often grounded in simulation or
controlled testing, struggle to capture the full complexity of
real-world deployment, leaving many failure modes unde-
tected until operation.

A promising direction for improving robustness is to sys-
tematically learn from failures that occur during deployment.
Robots naturally collect large volumes of perceptual data,
including traces of both successful and failed interactions.
These failure trajectories can provide valuable insights about
the underlying conditions that led to safety violations, brit-
tleness, or policy errors. However, manually curating and
analyzing large-scale failure data is time-consuming and
fundamentally unscalable.

In this work, we propose a framework for automatically
organizing failure trajectories into semantically meaning-
ful clusters, enabling scalable, unsupervised learning from
failures. Our method leverages the reasoning capabilities
of MLLMs—pretrained on internet-scale vision-language
data—to infer high-level failure causes directly from raw
observations. By reasoning over sequences of perceptual in-
puts, we identify structure in uncurated failure logs, grouping
them into interpretable categories described in natural lan-
guage. Importantly, our framework operates in a completely
unsupervised manner, obviating the need for costly human
annotation while still isolating nontrivial keywords and cues
associated with specific error causes.

The resulting semantic clusters bring multiple downstream
benefits. In this paper, we demonstrate their value in guiding
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targeted data collection, enabling developers to focus train-
ing efforts on critical or underrepresented failure scenarios,
thereby reducing data collection costs. Additionally, these
clusters can be integrated directly into online failure monitor-
ing systems, providing a layer of semantic failure detection
that acts as an early-warning mechanism for potential system
safety violations at runtime. Beyond these applications, iden-
tifying semantic failure modes opens further avenues, such
as facilitating targeted stress testing.

Our framework not only supports large-scale, structured
analysis of failure data but also emphasizes interpretability
– crucial for deployment in safety-critical domains. By
revealing a structured understanding of failure causes in
terms amenable to human interpretation, we offer actionable
insights that can help stakeholders better assess the weak-
nesses of deployed systems and iterate more effectively.

Contributions. (a) we propose a novel framework that
uses MLLMs to cluster robotic failure data into semantically
meaningful groups; (b) our method infers failure causes
directly from raw perceptual sequences, eliminating manual
annotation or supervision; (c) we demonstrate the effective-
ness of our approach on large-scale failure datasets, as well
as showcase its potential for supporting downstream appli-
cations, including targeted data collection and online failure
detection; (d) our framework emphasizes interpretability,
generating natural language summaries and keywords for
each failure mode to support human-in-the-loop diagnosis.

II. RELATED WORKS

Semantic Clustering of Images with LLMs. Recent
work has shown the effectiveness of MLLMs for semantic
image grouping. Prior methods cluster images using human-
specified language criteria [1] or automatically discover
clustering criteria from image collections [2], removing man-
ual input dependency. Other approaches highlight semantic
differences between image sets [3], or focus on identifying
important subpopulations or selecting semantically diverse
subsets for training [4],[5]. Our work builds on this line
of research by leveraging MLLMs for semantic clustering;
however, we focus specifically on failure trajectories in
autonomous systems rather than static images, introducing
a richer temporal and causal structure to the clustering task.

Text Clustering and Topic Modeling. Recent topic mod-
eling methods can be broadly grouped into three categories.
First, extensions of classical topic modeling techniques [6]–
[9] like Latent Dirichlet Allocation (LDA) integrate word
embeddings to enhance semantic representation [10]–[13].
Second, fully embedding-based approaches [14]–[17] that
can leverage contextualized representations from pre-trained
language models. Third, methods that separate clusters gen-
eration from topic representation, allowing for a flexible
topic model [18]–[20]. BERTopic [20], extends this approach
by incorporating a class-based variant of Term Frequency-
Inverse Document Frequency (TF-IDF). Our work differs in
the way we use semantic reasoning to discover failure clus-
ters from multimodal data and language-based explanations.

Failure Mining in Autonomous Systems. Falsification
has emerged as a prominent methodology for uncovering
failures in autonomous systems. A variety of approaches
[21]–[27] have been proposed, wherein systems are tested in
simulated environments with varied conditions designed to
provoke failures. Such controlled testing allows researchers
to identify the specific environmental parameters responsible
for system breakdowns. However, while these methods ef-
fectively reveal failure scenarios tied to controlled variables,
they fall short in capturing semantic failure modes of the
system that require nuanced interpretation, requiring a human
to manually go through those failure scenarios to identify
failure modes of the system. In contrast, our approach lever-
ages readily collected failure data to automatically discover
semantic failure modes, bypassing manual human inspection.

Language-based Failure Reasoning in Robotics.
Recently, several studies have explored integrating LLMs

into robotic systems to generate language-based explanations
of failures. Prior work has shown that LLMs can enhance
diagnostic capabilities in manipulation tasks by producing
informative failure descriptions and even guiding planners to
correct those failures [28]–[30]. Building on these advances,
our work focuses on failure mode analysis, aiming to auto-
matically cluster and interpret semantically rich textual de-
scriptions from raw failure data—thereby enabling improved
monitoring, interpretability, and targeted data collection.

III. PROBLEM FORMULATION: FINDING FAILURE
CLUSTERS FROM PERCEPTION RECORDINGS

We consider the problem of discovering semantic fail-
ure clusters from perception data collected during robotic
failures. These clusters provide interpretable structure over
uncurated failure logs and can be used for downstream tasks.

Formally, we are given a dataset of N sequences, each
consisting of K perceptual observations leading to a failure:

D = {on1:K}Nn=1

where on1:K = (on1 , o
n
2 , . . . , o

n
K) denotes the observation

sequence for the n-th failure case. The final observation onK
corresponds to the failure event. For example, in autonomous
driving, onK might be an image showing a rear-end collision.

Our goal is to construct a system H that maps this dataset
to a set of L semantic clusters:

H : D 7→ {Cl = (sl, Dl)}Ll=1 ,

where each cluster Cl is characterized by a natural language
summary sl and a subset of sequences Dl ⊂ D that share
a common failure mode. These clusters reflect high-level
failure themes derived from raw observations. For instance,
a cluster might be: Cl = Rear-End Collisions:
Insufficient Following Distance, in which case
each sequence in Dl corresponds to a failure where an
autonomous car did not maintain a safe following distance
from the vehicle in front.

This formulation enables unsupervised discovery of inter-
pretable failure modes directly from perceptual logs, provid-
ing a scalable mechanism for structuring real-world failure



data and guiding robust and adaptive learning.

IV. METHOD

A. Discovering Failure Modes using MLLMs

Inferring the cause of failure in a robot trajectory is a
complex task that requires understanding the robot’s environ-
ment, the agent’s actions, interactions with other agents, and
their consequences. Doing so at scale across diverse failure
episodes calls for automated systems capable of extracting
and reasoning over semantic patterns in raw failure data.
Our approach proceeds in three stages: (1) inferring failure
reasons from perception sequences using an MLLM, (2)
discovering semantic failure clusters via prompted reasoning
over inferred causes, and (3) assigning each sequence to one
of the discovered clusters, as shown in Fig. 1.

Observation Downsampling. To represent the failure
event compactly, we downsample the tail of each sequence.
Specifically, from each failure sequence on1:K , we select the
final T frames, sampled from oK−T :K at a reduced frame
rate. This balances the need to understand the temporal
context of the failure with the limitations of the MLLM’s
context window.

1) Step 1: Inferring Failure Reasons with MLLMs: Each
downsampled sequence is fed to a reasoning MLLM along
with a structured prompt. The prompt first asks the model to
describe the scene and agent behavior along the trajectory,
and then to infer a plausible cause of failure. We adopt a
Chain-of-Thought (CoT) prompting strategy [31] to improve
grounding and interpretability of the inferred reasons.

2) Step 2: Discovering Semantic Failure Clusters: To
uncover structure across failures, we provide all N inferred
failure reasons to a reasoning LLM and prompt it to group
them into L distinct, interpretable semantic clusters. The
number of clusters “L" is not fixed, but dynamically decided
by the LLM based on dataset-specific characteristics, such
that each cluster represents a unique failure mode, with mini-
mal overlap between clusters and comprehensive coverage of
the dataset. The model is instructed to ensure that clusters are
mutually exclusive and collectively exhaustive, facilitating
clear categorization and downstream analysis.

Each cluster Cl is annotated with: a natural language name
sl for the cluster, a short description of the failure type,
keywords capturing representative situations in the cluster,
and an estimated frequency of occurrence in the dataset.
These annotations serve both interpretability and downstream
usage in safety-critical settings.

Automated Prompt Ensemble and Cluster Aggregation
Since LLM outputs are sensitive to prompt phrasing [32], we
generate a prompt ensemble to improve robustness inspired
by [33]. Given an initial prompt, an LLM proposes three
other prompts using good prompting practices. We use this
ensemble of prompts to infer multiple failure clustering
results. The resulting clusterings are then merged by the same
reasoning LLM, like an aggregation model, that consolidates
overlapping clusters and unifies labels and descriptions into
a single set of failure clusters {C}Aggregate. This approach
generates a more comprehensive set of failure clusters by

capturing diverse interpretations of failure reasons and com-
piling them into one final set of clusters.

3) Step 3: Assigning Trajectories to Failure Clusters:
Finally, each failure trajectory is assigned to one of the L
discovered clusters by prompting an LLM with the cluster
names sl, keywords, and descriptions generated in the pre-
vious step, and asking it to map the trajectory description
and corresponding failure reason to one of the clusters.
Trajectories that do not match any cluster are flagged as
outliers, which may indicate rare or complex failure modes.

B. Downstream Safety Enhancement

Discovered failure clusters support two key mechanisms
for enhancing safety in autonomous systems.

Online Failure Detection. Clusters, along with their
associated keywords and explanations, form the foundation
for semantic understanding in our MLLM-based failure de-
tection system. During execution, an MLLM-based monitor
observes a recent history of visual inputs and reasons about
them in the context of known failure modes. It leverages
the structured, semantic knowledge captured in these clus-
ters—each describing characteristic failure types, contexts,
and explanations—to interpret unfolding behavior. When the
current observations semantically align with a known failure
mode, the monitor flags the situation as unsafe, enabling
early anticipation of failures before they fully manifest. This
semantic understanding supports more nuanced, accurate,
and proactive failure detection, improving the overall safety
and reliability of the system at runtime.

Targeted Data Collection and Policy Refinement. Se-
mantic clusters enable targeted data augmentation by iden-
tifying failure scenarios that require additional supervision.
This allows practitioners to collect expert demonstrations or
counterfactual data in these high-risk regimes and retrain or
finetune the policy accordingly. Prior work has also shown
that specification-guided or failure-aware data collection im-
proves robustness in previously unsafe scenarios [34]–[37].

V. EXPERIMENTS

We evaluate our framework for discovering semantic
failure clusters across three distinct robotic domains. The
first case study examines robot manipulation failures in
long-horizon kitchen tasks, the second analyzes real-world
dashcam videos of car crashes, and the third focuses on
autonomous vision-based navigation in indoor office environ-
ments. In each domain, our goal is to extract interpretable
clusters that represent underlying failure modes from raw
perceptual sequences and to demonstrate their usefulness for
downstream tasks such as runtime failure monitoring and
targeted data collection, when applicable.

We propose to use Gemini 2.5 Pro as the MLLM for
understanding system behavior and inferring failure reason of
a trajectory, and OpenAI o4-mini for semantic cluster discov-
ery, trajectory-to-cluster assignment, online failure detection,
and as judge for metrics computations. Our choice of LLMs
is based on their reasoning abilities for particular tasks, after
evaluating different open and closed-source models. Sec. V-A



discusses the results for discovering failure modes and Sec.
V-B shows their usage for downstream safety enhancement.

A. Discovering Failure Modes using MLLMs

1) Case Study 1: Robot Manipulation: We evaluate our
framework on RoboFail [28], a dataset of manipulation fail-
ures in long-horizon kitchen tasks. The dataset includes an
expert-defined taxonomy of eight distinct manipulation fail-
ure modes, comprising 100 simulated failure videos across
10 kitchen tasks and 30 real-world videos (960×960 reso-
lution at 1 fps). Each video provides detailed task context,
including the failure timestamp, task description & success
conditions, the symbolic action plan executed by the robot,
and an expert-annotated failure reason.

a) Inferring Failure Reasons: While inferring failure
reasons, we incorporate task context and robot’s action plan
alongside perception inputs. These additional cues help the
model distinguish between failures caused by flawed plan-
ning and those arising from execution errors. Fig. 2 shows an
example inference of a failure caused due to dropping a pot,
including our prompt and LLM’s response. Table I reports
results for both simulation and real-world data. To assess
the inferred failure reasons, we use two metrics: (a) average
cosine similarity (CS) and (b) LLM-as-a-Judge (LLM%)
evaluation that uses an LLM to check semantic similarity
between the inferred and expert-annotated labels.

TABLE I: Failure reasoning performance of different
MLLMs evaluated on simulation and real-world data.

Method
Simulation Real-World

CS LLM(%) CS LLM(%)

Video-LLaVA-7B 39.78 10.2 65.23 10.0
Qwen2.5-VL-7B 52.48 25.0 67.36 33.3
OpenAI o4-mini 55.80 47.0 59.87 30.0

Gemini 2.5 Pro 61.13 73.0 62.81 56.7

Among the evaluated models, Gemini 2.5 Pro achieves the
best performance across simulation and real-world datasets,
outperforming other proprietary and open-source models.
Notably, it attains a high cosine similarity (CS) and LLM-
based semantic agreement (LLM) scores, indicating stronger
alignment with expert-labeled failure reasons. Though LlaVA
and Qwen models obtain higher CS values for real-world
data, their lower (LLM) scores indicate that the inferred
failure reasons lack true semantic agreement with expert
annotations despite having similar contextual embeddings.

We also compare against AHA-13B [29], a VLM fine-
tuned specifically on a manipulation failure dataset. On the
real-world data, AHA-13B achieves 47.1 (CS) and 46.5
(LLM%), both lower than our proposed reasoning-based
approach. In our experiments we observe that while fine-
tuned model can specialize in specific viewpoints, tasks, and
environments, it struggles to generalize across diverse tasks
or unseen settings. In contrast, our framework, which lever-

Fig. 2: A failure inference example where robot dropped a
pot with water on the floor while carrying it. Frame with
red border shows the frame at failure timestamp. Blue box
shows the prompt and orange box shows LLMs response.

ages general-purpose reasoning models, remains viewpoint-
agnostic and adapts effectively across different domains with-
out retraining on expert-collected datasets. Since our method
operates offline, the inherent latency of reasoning models
does not pose a limitation. This allows leveraging their strong
semantic understanding to infer nuanced and contextually
accurate failure reasons across diverse conditions.

b) Discovering Semantic Clusters: We cluster all
the obtained failure reasons into distinct semantic groups.
The list below and Fig. 3 present the discovered clusters,
their keywords, and occurrence frequencies in the dataset.
Qualitatively, the clusters exhibit clear and interpretable
groupings—for instance, Manipulation & Control
Failures capture execution-level issues like failed
grasps or unintended drops, Planning Parameter
& Resource Selection Errors describe
incorrect or misspecified actions, and Perception
& State-Awareness Issues isolate failures due
to misidentification or incomplete scene understanding.
Together, these clusters capture fine-grained distinctions
between perception, planning, and control errors, providing
a semantically rich and interpretable organization of failures.

Robot Manipulation Clusters
(18%) Manipulation & Control Failures: drop, failed grasp, collision,
put-in fail, poor pour, misplacement
(17%) Perception & State-Awareness Failures: misidentify, wrong
object, object-state misperception, content-detection fail, occupancy de-
tection
(17%) Planning Parameter & Resource Selection Errors: wrong
container, inappropriate tool, unsafe object, incorrect burner, plan-
specified target wrong
(16%) Planning Sequencing & Order Errors: wrong order, out-of-
sequence, before/after swapped, precondition violation
(12%) Planning Logic & Efficiency Flaws: illogical, flawed assump-
tion, inefficient loop, redundant step, violates domain rule
(10%) Planning Omission Errors: missing step, forgot to open/close,
omit pick-up, no turn-on/off, neglect slice
(10%) Environment & Navigation Failures: path obstructed, blocked
handle, surface occupied, wrong location, mispositioned



Fig. 3: Robot manipulation failure clusters with examples.

Baselines and Results. To evaluate the quality of the
discovered failure clusters, we compare our approach against
BERTopic [20], a state-of-the-art topic modeling method
that combines transformer embeddings with unsupervised
clustering and keyword extraction. We apply BERTopic to
the same set of textual failure reasons produced in Step 1
to ensure a direct and fair comparison. We also include a
stronger variant, BERTopic-LLM, in which a language model
summarizes each cluster using representative keywords, sum-
maries, and examples.

BERTopic Keywords
(41) the, water, to, mug, pot, it, robot, of, sink, with
(38) the, to, it, robot, egg, bowl, plan, pan, potato, is
(12) the, bread, slice, toaster, to, robot, failed, of, was, loaf
(9) the, remote, to, laptop, plan, on, it, television, navigate

BERTopic-LLM Clusters
(41) Robot planning failures
(38) Robot task failures
(12) Robot action errors
(9) Flawed robot plans

Standard BERTopic tends to produce clusters that lack
semantic coherence, primarily grouping together frequently
occurring words without capturing deeper conceptual re-
lations. BERTopic-LLM improves interpretability by gen-
erating more meaningful topics, but its clusters remain
broad, overlapping, and generic—often merging distinct
categories such as Wrong action order, Missing
actions, and Wrong actions into a single, high-
level group like Robot planning failures. Conse-
quently, it fails to capture root-cause distinctions critical for
understanding robotic failure patterns.

For quantitative comparison, we compute LLM-generated
similarity scores between the generated clusters and the
expert-defined failure taxonomy from RoboFail by prompting
an LLM to assign similarity scores for each generated cluster
with each failure mode from the expert taxonomy. The
heatmaps in Fig. 4 visualize these correspondences for our
method (a) and baselines (b,c). Our approach yields sharper,
diagonally dominant heatmaps—indicating strong one-to-one
alignment between discovered and expert categories—while
both BERTopic and BERTopic-LLM exhibit more diffuse
and overlapping mappings. Moreover, our clusters achieve
strong coverage across all eight expert-defined failure types,

including both frequent and rare modes, demonstrating our
framework’s ability to recover the full taxonomy while
maintaining semantic distinctness. This confirms that our
LLM-based semantic clustering captures interpretable, non-
redundant, and expert-consistent failure modes, outperform-
ing topic-modeling baselines in both qualitative coherence
and quantitative alignment.

c) Assigning Sequences to Clusters: Lastly, we assign

Fig. 5: Weighted F-1
Score Comparison

Method F-1 (%)

RA 13.93
EA 32.41

Ours 85.53

all the textual failure reasons
to the obtained list of clusters.
Fig. 5 compares the weighted F-
1 scores between the assignments
made by our framework, the as-
signments made by an embedding-
based assigner (EA)—which as-
signs to the cluster with the high-
est cosine similarity as the failure
reason, and random assignment (RA).

2) Case Study 2: Real-World Car Crash Videos: We
apply our framework to the Nexar car crash dataset [38],
which includes 1,500 dashcam videos (each approximately
40 seconds, 1280×720 resolution at 30 fps) of collisions or
near-misses involving the ego vehicle. While these record-
ings are from human-driven vehicles, they serve as a proxy
for autonomous driving failures in the absence of large-
scale public AV failure datasets. However, our framework
is directly applicable to autonomous vehicle logs as well.

Real-World Car Crash Clusters
(35%) Rear-End Collisions / Insufficient Following Distance: rear-
end, tailgating
(25%) Intersection Right-of-Way Violations: left turn, red light
(18%) Unsafe Cut-In / Lane-Change Intrusions: lane change, cut-in
(8%) Lane Departure & Lateral-Clearance Errors: lane departure,
misjudged gap
(7%) Visibility-Impaired Perception Failures: glare, low visibility
(4%) Pedestrian & Cyclist Detection Failures: pedestrian, crosswalk
(1%) Static-Obstacle & Sudden Intrusion Collisions: door opening,
sudden obstacle
(1%) Infrastructure & Clearance Errors: underpass, vertical clearance
(1%) Other Rare / Long-Tail Cases: wrong-way, extreme/edge-case

Our system successfully discovers a diverse set of inter-
pretable failure clusters from the driving dataset, as listed
above and in Fig. 6. Qualitative inspection shows that these
clusters correspond to meaningful and recurring traffic inci-
dent types, such as rear-end collisions, unsafe
lane changes or intersection misjudgments.

Notably, the discovered clusters closely align with the
U.S. DOT Volpe Center’s pre-crash typology [39], capturing
most major failure types observed in real-world driving.
This highlights our method’s ability to recover semantically
grounded failure categories directly from unstructured video
data in a way that aligns with expert-defined taxonomies.

3) Case Study 3: Vision-Based Indoor Robot Navigation:
We apply our framework to a vision-based ground robot,
navigating unknown indoor office environments [40]. The
robot uses a CNN-based policy with a model-based low-level



Fig. 4: Heatmaps comparing similarity scores between the RoboFail expert-defined failure taxonomy and the generated
clusters by (a) our method, (b) BERTopic, and (c) BERTopic-LLM.

Fig. 6: Real-world car crash failure clusters with examples.

controller. It receives RGB images, ego-velocities, and a goal
position, and outputs acceleration commands for the robot.
We record robot rollouts in the simulated Stanford office
environment [41] and extract front-view image sequences.
The trajectories resulting in a collision comprise our failure
dataset D, which we use for clustering.

Our method discovers a set of interpretable failure clusters
from collision trajectories, as listed below and in Fig. 7.
Notably, clusters such as protruding corners, white
walls, and glass doors were also previously identified
by HJ-reachability analysis and manual inspection in [42].
This validates our method’s ability to automatically recover
known failure types and uncover new semantic patterns.

Vision-Based Indoor Navigation Clusters
(42%) Thin–Protruding Objects: folding chair, thin metal legs
(23%) Uniform/Featureless Surface: featureless wall, white cabinet
(18%) Narrow–Gap/Clearance Misjudgment: narrow passage, insuf-
ficient clearance
(10%) Low–Height Clutter & Small Floor Obstacle: backpack,
cables
(9%) Box–Like Equipment & Carts: computer tower, server cabinet
(9%) Structural Edges: door frame, wall corner
(4%) Transparent & Reflective Surfaces: glass door, mirror
(6%) Bins & Waste Receptacles: trash bin, recycling bin
(1%) Overhead & Ceiling Fixtures: ceiling fixture, low ceiling

Fig. 7: Major indoor navigation clusters with examples.

B. Downstream Safety Enhancement

We present the results for runtime failure monitoring for
the car crash videos and the vision-based indoor navigation
systems. We also present targeted data collection and policy
fine-tuning results on the latter, as we have access to its
operating policy, while we only have a dataset for the former.

1) Case Study 1: Real-World Car Crash Videos:
a) Failure Monitoring Leveraging Discovered Clusters:

We evaluate online failure detection by prompting an MLLM
with recent visual history and the discovered failure clusters,
and reasoning about any possible near-future collision.

b) Baselines: We compare our approach against LLM-
Based Anomaly Detection (LLM-AD) methods, such as [44],
which provide a few human-written examples of anomalous
and nominal objects for a particular system to an LLM, along
with the scene description, and ask it to detect any possible
anomalies in the current scene. We also compare against
VideoMAE-BC, the top-performing failure video classifier on
the Nexar Crash Prediction Challenge on Kaggle, based on
a fine-tuned VideoMAEv2-giant model[43].

c) Results: We compare all methods on a set of 200
held-out in-distribution (IID) driving trajectories. Table II
shows that our method consistently achieves the highest F1
score and outperforms baselines in both True Positive Rate
(TPR) and False Negative Rate (FNR), showcasing its ability
to detect the actual failures both robustly and reliably. These



TABLE II: Failure Detection Metrics (%age) for car crash videos and indoor robot navigation systems. The left and right
halves compare metrics for IID and OOD tests, respectively. The last column represents the (average) lead detection time.
The best method is highlighted in bold.

Method In-Distribution Trajectories Out-of-Distribution Trajectories Time
TPR TNR FPR FNR F1 TPR TNR FPR FNR F1

Real-World Car Crash Videos

VideoMAE-BC [43] 52.0 93.1 6.9 48.0 65.3 18.0 75.0 25.0 82.0 25.2 506.6 ms
LLM-AD 7.1 91.1 8.9 92.9 12.3 35.0 94.0 6.0 65.0 49.7 166.6 ms
NoContext 42.8 85.3 14.7 57.2 54.1 64.0 80.0 20.0 36.0 69.6 473.3 ms

Ours 71.4 72.5 27.5 28.6 71.4 83.0 70.0 30.0 17.0 77.9 610 ms

Vision-Based Indoor Robot Navigation

ENet-BC [34] 65.0 100.0 0.0 35.0 78.8 100.0 6.3 93.7 0.0 22.4 1.01 sec
LLM-AD 83.3 50.0 50.0 16.7 40.0 62.2 60.1 39.9 37.8 27.2 1.38 sec
NoContext 51.7 99.6 0.4 48.3 67.4 45.9 89.0 10.1 54.1 40.5 0.76 sec

Ours 65.0 99.0 1.0 35.0 77.2 67.6 86.2 13.8 32.4 50.0 1.21 sec

results also indicate that the system failures are not always
the same as anomalies or out-of-distribution (OOD) inputs;
IID scenarios, like those specified in our clusters, can also
lead to system failures that are hard to capture with LLM-
AD. We also test all methods on an unseen dashcam dataset
of 200 OOD trajectories. The proposed method demonstrates
strong generalization. This suggests our method captures
structured semantic patterns beyond dataset-specific cues,
unlike VideoMAE-BC, which lacks generalizability.

Finally, we compare the lead failure detection time of
different methods in Table II. Our method detects failures
earlier than others, indicating a stronger ability to anticipate
failures by correlating the scene observation with the clusters.

d) Ablations: We also compare the performance of the
proposed failure detection method on removing the fail-
ure cluster information from the runtime monitor’s prompt
(NoContext). All other implementation details, such as pro-
cessing a history of past observations and CoT reasoning,
remain the same as our method. This results in significant
performance degradation, highlighting the utility of failure
cluster information in better detection across environments.

2) Case Study 2: Vision-Based Indoor Robot Navigation:

a) Targeted Data Collection and Policy Fine-Tuning:
Following Sec. IV-B, we use the discovered clusters to
guide expert data collection in targeted regions of the en-
vironment. The robot policy is fine-tuned on an augmented
dataset containing an additional 40K samples collected in
identified failure zones along with the original training
data. The failure rate in sampled trajectories drops from
46% to 18%, demonstrating enhanced safety in previously
failure-prone situations, whereas fine-tuning with randomly
collected additional data only improves the failure rate to
34%. This forms a closed-loop pipeline of failure discovery,
targeted intervention, and policy refinement for continuously

enhancing system safety.

b) Failure Monitoring: We use the same runtime mon-
itoring approach as in Case Study 1. The monitor reasons
over the scene, past trajectory, and known failure clusters
to preemptively identify any potential failure. As evident in
Fig. 7, due to the confined and cluttered nature of the indoor
environment, the failure monitor can easily misinterpret static
background elements with prior failure contexts, leading to
a high false positive rate. To mitigate this, we introduce a
simple temporal consistency rule: a failure is flagged only
if it persists for three consecutive frames. This helps reduce
conservativeness while preserving responsiveness.

c) Baselines: We compare against LLM-AD by pro-
viding nominal and anomalous examples relevant to an
indoor office environment in the prompt. We additionally
compare against ENet-BC, a vision-based binary failure clas-
sifier based on EfficientNet-B0, trained on labeled collision
data from the same environment [34]. Note that, unlike
our method and LLM-AD, ENet-BC requires environment-
specific training and does not generalize to unseen layouts.

d) Results: On an IID test set of 326 trajectories, our
method outperforms all LLM-based baselines in F1 score, as
presented in Table II. ENet-BC achieves similar performance
to the proposed method, as expected given its environment-
specific training. To test generalization, we evaluate on an
OOD set of 300 trajectories from a different building. The
performance of all methods degrades as expected, but the
proposed method maintains the highest F1 score, while ENet-
BC fails entirely to generalize. This again demonstrates the
generalization capabilities of our method.

Our method also detects failures earlier on average, high-
lighting its ability to reason about impending collisions
before impact. Full metrics are in Table II. Although LLM-
AD has a slightly higher average time, it is because it fails
entirely and detects everything as anomalous, as evidenced



by its high FPR.

e) Engaging the Safeguard Policy: We integrate our
runtime failure monitor with a reactive safeguard controller
that activates upon failure detection. Fig. 8 shows an example
where the nominal policy leads to collision with a glass door,
while the monitor proactively detects the failure and invokes
the safeguard controller, enabling successful recovery.

Fig. 8: Robot failing under nominal policy (red) due to
misidentifying glass door as traversible, but succeeding under
safeguard policy (blue). Red and green borders around first-
person view images denote unsafe and safe predictions.

VI. CONCLUSION

We present a closed-loop framework for interpretable fail-
ure analysis in autonomous systems. Our method automati-
cally discovers semantically meaningful failure modes from
perception recordings without supervision, organizing them
into human-understandable clusters. These clusters enable
targeted data collection, policy fine-tuning, and semantic
failure detection—supporting scalable and continuous safety
improvement. By leveraging the reasoning capabilities of
MLLMs, our approach provides a foundation for understand-
ing and responding to failures in unstructured environments.

While our framework enables interpretable and action-
able failure analysis, several limitations remain. There is
no canonical way to cluster failure trajectories, and dif-
ferent strategies may highlight different insights. Future
work could integrate formal methods like STPA or FRAM
to complement unsupervised clustering. MLLMs may also
produce plausible but incorrect explanations, which could
be mitigated through causal or simulation-based validation.
Finally, while we evaluate on datasets of ∼700 trajectories,
our pipeline can readily scale to larger and more temporally
extended data.
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